functorial subgroup - définition. Qu'est-ce que functorial subgroup
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est functorial subgroup - définition

CONCEPT IN CATEGORY THEORY
Functorial point

Normal subgroup         
SUBGROUP INVARIANT UNDER CONJUGATION
Normal subgroups; Invariant subgroup; ◅; Normal group; ⊲; ⊳; ⊴; ⊵; ⋪; ⋫; ⋬; ⋭; Normal Subgroup; Self-conjugate subgroup
In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group G is normal in G if and only if gng^{-1} \in N for all g \in G and n \in N.
Commutator subgroup         
SMALLEST NORMAL SUBGROUP BY WHICH THE QUOTIENT IS COMMUTATIVE
Derived subgroup; Abelianisation; Abelianization; Derived group; Derived series; Transfinite derived series; The Commutator Subgroup Of G; The Derived Group Of G; Commutator group
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.
Subgroup         
  • 60px]]
  • 60px
  • 60px
  • 60px
  • 60px
  • 70px
  • 70px
  • 70px
  • 70px]]
  • 70px]]
  • 70px]]
  • 70px
  • 70px
  • 70px
  • 70px
  • additive group]]). Together they partition the entire group G into equal-size, non-overlapping sets. The index [G : H] is 4.
  • 60px]]
  • 60px]]
  • 60px]]
  • 60px]]
  • The [[symmetric group]] S<sub>4</sub> showing all [[permutation]]s of 4 elements
SUBSET OF A MATHEMATICAL GROUP THAT FORMS A GROUP ITSELF
SubGroup; Subgroups; Proper subgroup; Overgroup; Subgroup test; Subgroup Test; Sub-group; Subgroup (mathematics); Subgroups of S4
·noun A subdivision of a group, as of animals.

Wikipédia

Element (category theory)

In category theory, the concept of an element, or a point, generalizes the more usual set theoretic concept of an element of a set to an object of any category. This idea often allows restating of definitions or properties of morphisms (such as monomorphism or product) given by a universal property in more familiar terms, by stating their relation to elements. Some very general theorems, such as Yoneda's lemma and the Mitchell embedding theorem, are of great utility for this, by allowing one to work in a context where these translations are valid. This approach to category theory – in particular the use of the Yoneda lemma in this way – is due to Grothendieck, and is often called the method of the functor of points.